Lecture 1: Lifting Brauer Characters and Generalized Class Functions

William Chuang, Based on Prof. Lux' Lectures and Navarro's Book

March 27, 2025

1. Motivation: From Ordinary to Modular Representation Theory

Let G be a finite group and p a prime dividing |G|. While ordinary character theory studies representations over \mathbb{C} , modular representation theory considers representations over a field k of characteristic p. The irreducible characters in this setting are called *Brauer characters*, denoted $\phi \in \operatorname{IBr}(G)$.

2. p-Regular Elements and Domains of Brauer Characters

Definition 1 (p-regular element). An element $g \in G$ is called p-regular if the order of g is not divisible by p.

Let:

- $G_{p'}$: the set of *p*-regular elements of *G*,
- $\operatorname{Cl}_{p'}(G)$: the set of *p*-regular conjugacy classes.

Brauer characters $\phi \in \operatorname{IBr}(G)$ are defined only on $G_{p'}$, and vanish on p-singular elements.

3. Generalized Characters and Class Functions

Let:

- \mathbb{Z} Irr(G): the group of generalized ordinary characters (i.e., integer linear combinations of Irr(G)),
- \mathbb{Z} IBr(G): the group of generalized Brauer characters.

Given $\theta \in \mathbb{Z} \operatorname{IBr}(G)$, we aim to lift θ to a class function on all of G, ideally lying in $\mathbb{Z} \operatorname{Irr}(G)$.

4. Two Canonical Lifts of a Brauer Character

Let θ be a class function on $G_{p'}$. We define two lifts:

(1) Tilde Lift (Green's Lift)

Let $|G|_p$ denote the highest power of p dividing |G|. Define:

$$\tilde{\theta}(x) = \begin{cases} |G|_p \cdot \theta(x) & \text{if } x \text{ is } p\text{-regular,} \\ 0 & \text{otherwise.} \end{cases}$$

(2) Hat Lift

Let $x = x_p x_{p'}$ be the Jordan decomposition of $x \in G$, where x_p is the *p*-part and $x_{p'}$ the *p'*-part. Define:

$$\hat{\theta}(x) = \theta(x_{p'}).$$

5. Lemma (Navarro, Lemma 2.15)

Lemma 1 (Green's Lift Preserves Generalized Characters). Let $\theta \in \mathbb{Z}$ Irr(G) or $\theta \in \mathbb{Z}$ IBr(G). Then both $\hat{\theta}$ and $\hat{\theta}$ lie in \mathbb{Z} Irr(G).

This lemma is proven using a characterization theorem of Brauer (see Navarro, Chapter 2).

6. Brauer's Criterion for Generalized Characters

Theorem 1 (Brauer's Characterization Theorem). A class function θ on G lies in \mathbb{Z} Irr(G) if and only if for every p-elementary subgroup $E = P \times Q \leq G$, where P is a p-group and Q is a p'-group, the restriction $\theta|_E \in \mathbb{Z}$ Irr(E).

To verify that $\tilde{\theta}, \hat{\theta} \in \mathbb{Z}\operatorname{Irr}(G)$, it suffices to show their restriction to $P \times Q$ lies in $\mathbb{Z}\operatorname{Irr}(P \times Q)$.

7. Example: Regular Character of a *p*-Group

Example 1. Let P be a nontrivial p-group. Then $IBr(P) = \{\phi_{triv}\}\)$, and the corresponding projective character is the regular character:

$$\Phi(x) = \begin{cases} |P| & x = 1, \\ 0 & x \neq 1. \end{cases}$$

This is an example of a lift via $\tilde{\theta}$, concentrated on the identity.

8. Summary

- Brauer characters are defined only on *p*-regular elements.
- The tilde and hat lifts extend Brauer characters to all of G.
- Lemma 2.15 (Navarro) shows both extensions are generalized characters.
- Brauer's criterion gives a test for when a class function lies in \mathbb{Z} Irr(G), based on restrictions to p-elementary subgroups.

Next Lecture

In Lecture 2, we will:

- Introduce the decomposition matrix and its entries $d_{\chi\phi},$
- Define projective indecomposable characters and their duality with $\operatorname{IBr}(G)$,
- Study orthogonality on *p*-regular classes,
- Examine the inner product matrix and dual basis relationships (see Navarro, Chapter 3).